
Cloud and Big Data Summer
School, Stockholm, Aug., 2015
Jeffrey D. Ullman

1. Facebook “Friends” graph.

 Undirected graph, over a billion nodes, hundreds of
billions of edges.

2. Twitter Followers.

 Directed graph, three hundred million nodes,
hundreds of billions of arcs.

3. Many other examples: telephone calls, emails,
Wikipedia articles and editors, coauthorship,
etc., etc.

2

 These are not random graphs.
 Community structure: if there is an edge (A,B)

and an edge (B,C), it is more likely there is an
edge (A,C).

 Simple problem: divide a social network into
disjoint communities (sets of nodes with a
relatively high density of edges).

 Harder problem: find overlapping communities.

 More realistic case.

3

 Used to divide a graph into reasonable
communities.

 Roughly: the betweenness of an edge E is the
number of pairs of nodes (A,B) for which the
edge lies on the shortest path between A and B.

 More precisely: if there are several shortest
paths between A and B, then E is credited with
the fraction of those paths on which it appears.

 Edges of high betweenness separate
communities.

4

5

A D

C

E

F G

B

Edge (B,D) has betweenness = 12, since it is on the
shortest path from each of {A,B,C} to each of {D,E,F,G}.

Edge (G,F) has betweenness = 1, since it is on no
shortest path other than that for its endpoints.

1. Perform a breadth-first search from each node
of the graph.

2. Label nodes top-down to count the number of
shortest paths from the root to that node.

3. Label both nodes and edges bottom-up with the
fraction of shortest paths from the root to nodes
at or below.

4. The betweenness of an edge is half the sum of
the labels of that edge, starting with each node
as root.

 Half to avoid double-counting each edge.
6

7

A D

C

E

F G

B

A

D

C

E

F

G B

1

1

1 1

2
1

1

Label of root = 1

Label of other
nodes = sum of
labels of parents

BFS starting
at E

8

A D

C

E

F G

B

A

D

C

E

F

G B

1

1

1 1

2
1

1

4.5 1.5

4.5 1.5

1

1

1

Leaves get label 1

1 1 Edges get their
share of their
children

3

Interior nodes get
1 plus the sum of
the edges below

3
0.5 0.5

Split of G’s label
is according to the
path counts (black
labels) of its parents
D and F.

9

A D

C

E

F G

B

A

D

C

E

F

G B

1

1

1 1

2
1

1

4.5 1.5

4.5 1.5

1

1

1

1 1

3

3
0.5 0.5

Edge (E,D) has label 4.5.

This edge is on all shortest
paths from E to A, B, C, and D.

It is also on half the shortest
paths from E to G.

But on none of the shortest
paths from E to F.

10

A D

C

E

F G

B

12 5

5

4.5

4.5
4

1.5

1.5

1

11

A D

C

E

F G

B

5

5

4.5

4.5
4

1.5

1.5

1

A sensible partition into communities

12

A D

C

E

F G

B

4.5

4.5
4

1.5

1.5

1

Why are A and C closer than B?
B is a “traitor” to the community,
being connected to D outside the group.

 Why Care?

1. Density of triangles measures maturity of a
community.

 As communities age, their members tend to connect.

2. The algorithm is actually an example of a recent
and powerful theory of optimal join computation.

13

 Let the undirected graph have N nodes and M
edges.

 N < M < N2.

 One approach: Consider all N-choose-3 sets of
nodes, and see if there are edges connecting all 3.

 An O(N3) algorithm.

 Another approach: consider all edges e and all
nodes u and see if both ends of e have edges to u.

 An O(MN) algorithm.

14

 To find a better algorithm, we need to use the
concept of a heavy hitter – a node with degree
at least M.

 Note: there can be no more than 2M heavy
hitters, or the sum of the degrees of all nodes
exceeds 2M.

 A heavy-hitter triangle is one whose three
nodes are all heavy hitters.

15

 Consider all triples of heavy hitters and see if
there are edges between each pair of the three.

 Takes time O(M1.5), since there is a limit of 2M
on the number of heavy hitters.

16

 At least one node is not a heavy hitter.
 Consider each edge e.

 If both ends are heavy hitters, ignore.

 Otherwise, let end node u not be a heavy hitter.

 For each of the at most M nodes v connected to u,
see whether v is connected to the other end of e.

 Takes time O(M1.5).

 M edges, and at most M work with each.

17

 Both parts take O(M1.5) time and together find
any triangle in the graph.

 For any N and M, you can find a graph with N
nodes, M edges, and (M1.5) triangles, so no
algorithm can do significantly better.

 Note that M1.5 can never be greater than the
running times of the two obvious algorithms
with which we began: N3 and MN.

18

 If there is an edge between nodes u and v, then
u is a neighbor of v and vice-versa.

 The neighborhood of node u at distance d is the
set of all nodes v such that there is a path of
length at most d from u to v.

 Denoted n(u,d).

 Notice that if there are N nodes in a graph, then
n(u,N-1) = n(u,N) = n(u,N+1) = … = all nodes
reachable from u.

19

20

A D

C

E

F G

B

n(E,0) = {E}; n(E,1) = {D,E,F}; n(E,2) = {B,D,E,F,G};
n(E,3) = {A,B,C,D,E,F,G}.

 The sizes of neighborhoods of small distance
measure the “influence” a person has in a social
network.

 Note it is the size of the neighborhood, not the exact
members of the neighborhood that is important
here.

21

 n(u,0) = {u} for every u.
 n(u,d) is the union of n(v, d-1) taken over every

neighbor v of u.
 Not really feasible for large graphs, since the

neighborhoods get large, and taking the union
requires examining the neighborhood of each
neighbor.

 To eliminate duplicates.

22

 Remember the Flagolet-Martin algorithm for
estimating the number of distinct elements in a
stream?

 The same idea lets you estimate the number of
distinct elements in the union of several sets.

 Pick several hash functions.
 Let h be one of these hash functions.
 For each node u and distance d compute the

maximum “tail” length among all nodes in
n(u,d), using hash function h.

23

 Remember: if R is the maximum tail length in a
set of values, then 2R is a good estimate of the
number of distinct elements in the set.

 Since n(u,d) is the union of all neighbors v of u
of n(v,d-1), the maximum tail length of
members of n(u,d) is the largest of

1. The tail length of h(u), and

2. The maximum tail length for all the members of
n(v,d-1) for any neighbor v of u.

24

 Thus, we have a recurrence for the maximum
tail length of any neighbor of any node u, using
any given hash function h.

 Repeat for some chosen number of hash
functions.

 Combine estimates to get an estimate of
neighborhood sizes, as for the Flagolet-Martin
algorithm.

25

