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1. Facebook “Friends” graph. 

 Undirected graph, over a billion nodes, hundreds of 
billions of edges. 

2. Twitter Followers. 

 Directed graph, three hundred million nodes, 
hundreds of billions of arcs. 

3. Many other examples: telephone calls, emails, 
Wikipedia articles and editors, coauthorship, 
etc., etc. 
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 These are not random graphs. 
 Community structure: if there is an edge (A,B) 

and an edge (B,C), it is more likely there is an 
edge (A,C). 

 Simple problem: divide a social network into 
disjoint communities (sets of nodes with a 
relatively high density of edges). 

 Harder problem: find overlapping communities. 

 More realistic case. 
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 Used to divide a graph into reasonable 
communities. 

 Roughly: the betweenness of an edge E is the 
number of pairs of nodes (A,B) for which the 
edge lies on the shortest path between A and B. 

 More precisely: if there are several shortest 
paths between A and B, then E is credited with 
the fraction of those paths on which it appears. 

 Edges of high betweenness separate 
communities. 
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Edge (B,D) has betweenness = 12, since it is on the 
shortest path from each of {A,B,C} to each of {D,E,F,G}. 

Edge (G,F) has betweenness = 1, since it is on no 
shortest path other than that for its endpoints. 



1. Perform a breadth-first search from each node 
of the graph. 

2. Label nodes top-down to count the number of 
shortest paths from the root to that node. 

3. Label both nodes and edges bottom-up with the 
fraction of shortest paths from the root to nodes 
at or below. 

4. The betweenness of an edge is half the sum of 
the labels of that edge, starting with each node 
as root. 

 Half to avoid double-counting each edge. 
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Label of root = 1 

Label of other 
nodes = sum of 
labels of parents 

BFS starting 
at E 



8 

A D 

C 

E 

F G 

B 

A 

D 

C 

E 

F 

G B 

1 

1 

1 1 

2 
1 

1 

4.5 1.5 

4.5 1.5 

1 

1 

1 

Leaves get label 1 

1 1 Edges get their 
share of their 
children 
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Interior nodes get 
1 plus the sum of 
the edges below 
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Split of G’s label 
is according to the 
path counts (black 
labels) of its parents 
D and F. 
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Edge (E,D) has label 4.5. 

This edge is on all shortest 
paths from E to A, B, C, and D. 

It is also on half the shortest 
paths from E to G. 

But on none of the shortest 
paths from E to F. 
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A sensible partition into communities 
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Why are A and C closer than B? 
B is a “traitor” to the community, 
being connected to D outside the group. 



 Why Care? 

1. Density of triangles measures maturity of a 
community. 

 As communities age, their members tend to connect. 

2. The algorithm is actually an example of a recent 
and powerful theory of optimal join computation. 
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 Let the undirected graph have N nodes and M 
edges. 

 N < M < N2. 

 One approach: Consider all N-choose-3 sets of 
nodes, and see if there are edges connecting all 3. 

 An O(N3) algorithm. 

 Another approach: consider all edges e and all 
nodes u and see if both ends of e have edges to u. 

 An O(MN) algorithm. 
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 To find a better algorithm, we need to use the 
concept of a heavy hitter – a node with degree 
at least M. 

 Note: there can be no more than 2M heavy 
hitters, or the sum of the degrees of all nodes 
exceeds 2M. 

 A heavy-hitter triangle is one whose three 
nodes are all heavy hitters. 
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 Consider all triples of heavy hitters and see if 
there are edges between each pair of the three. 

 Takes time O(M1.5), since there is a limit of 2M 
on the number of heavy hitters. 
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 At least one node is not a heavy hitter. 
 Consider each edge e. 

 If both ends are heavy hitters, ignore. 

 Otherwise, let end node u not be a heavy hitter. 

 For each of the at most M nodes v connected to u, 
see whether v is connected to the other end of e. 

 Takes time O(M1.5). 

 M edges, and at most M work with each. 
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 Both parts take O(M1.5) time and together find 
any triangle in the graph. 

 For any N and M, you can find a graph with N 
nodes, M edges, and (M1.5) triangles, so no 
algorithm can do significantly better. 

 Note that M1.5 can never be greater than the 
running times of the two obvious algorithms 
with which we began: N3 and MN. 
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 If there is an edge between nodes u and v, then 
u is a neighbor of v and vice-versa. 

 The neighborhood of node u at distance d is the 
set of all nodes v such that there is a path of 
length at most d from u to v. 

 Denoted n(u,d). 

 Notice that if there are N nodes in a graph, then 
n(u,N-1) = n(u,N) = n(u,N+1) = … = all nodes 
reachable from u. 
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n(E,0) = {E}; n(E,1) = {D,E,F}; n(E,2) = {B,D,E,F,G}; 
n(E,3) = {A,B,C,D,E,F,G}.  



 The sizes of neighborhoods of small distance 
measure the “influence” a person has in a social 
network. 

 Note it is the size of the neighborhood, not the exact 
members of the neighborhood that is important 
here. 
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 n(u,0) = {u} for every u. 
 n(u,d) is the union of n(v, d-1) taken over every 

neighbor v of u. 
 Not really feasible for large graphs, since the 

neighborhoods get large, and taking the union 
requires examining the neighborhood of each 
neighbor. 

 To eliminate duplicates. 
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 Remember the Flagolet-Martin algorithm for 
estimating the number of distinct elements in a 
stream? 

 The same idea lets you estimate the number of 
distinct elements in the union of several sets. 

 Pick several hash functions. 
 Let h be one of these hash functions. 
 For each node u and distance d compute the 

maximum “tail” length among all nodes in 
n(u,d), using hash function h. 
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 Remember: if R is the maximum tail length in a 
set of values, then 2R is a good estimate of the 
number of distinct elements in the set. 

 Since n(u,d) is the union of all neighbors v of u 
of n(v,d-1), the maximum tail length of 
members of n(u,d) is the largest of 

1. The tail length of h(u), and 

2. The maximum tail length for all the members of 
n(v,d-1) for any neighbor v of u. 
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 Thus, we have a recurrence for the maximum 
tail length of any neighbor of any node u, using 
any given hash function h. 

 Repeat for some chosen number of hash 
functions. 

 Combine estimates to get an estimate of 
neighborhood sizes, as for the Flagolet-Martin 
algorithm. 
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